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Introduction

Figure 1. Overview of the types of machine learning

Artificial intelligence (AI) is the ability of 
machines to simulate human intelligence. 
Where regular computers are programmed 
to act based on pre-programmed rules, 
such as true/false or if/else statements, AI 
is designed to understand the relationships 
between data and develop novel solutions to 
problems. Since the 1950s, many types of AI 
have emerged, including machine learning 
(Figure 1). Each specialty trains computers to 
learn from data in unique ways.

AI techniques have been widely employed 
across a range of disciplines, particularly in 
scientific research where AI has been used 
to understand molecular properties, design 
molecules, and predict reaction outcomes. 
One area of science that has seen a huge 
increase in research related to AI is chemistry.
 

Since 2015, publications and patents using 
AI methodologies have increased drastically. 
Through AI, researchers have been able  
to make leaps in data processing that would 
otherwise have taken several decades if 
undertaken manually. Some examples 
include: 
 
– Predicting the bioactivity of new drugs
– Optimizing reaction conditions
–  Suggesting synthetic routes to complex  

target molecules
 
Despite the advancements in AI-related  
problem solving, there may still be 
significant opportunities for disciplines 
within chemistry that have low AI adoption. 
To understand where these opportunities 
are, we examined the landscape of AI in 
chemistry and what the barriers to adoption 
may be.
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CAS Content Collection TM and the growing role of AI in chemistry 

CAS is a leader in scientific information  
solutions – curating, connecting, and analyzing 
the valuable data disclosed in scientific literature 
globally to help accelerate breakthroughs.  
Our team of scientists and AI experts are at the 
heart of our collection, covering over 150 years of 
discoveries to build the highest quality and most 
up-to-date collection of scientific information  
in the world – the CAS Content Collection. 

The CAS Content Collection is the largest 
library of chemical information, and we used 
this to contextualize the current AI landscape 
by classifying and quantifying all chemistry 
publications related to AI between 2000  
and 2020.

Worldwide, scientific publications are growing  
at a rate of around 8% per year, equivalent to a 
two-fold increase of scientific output every nine 
years. Interestingly, the growing number of AI-
related journal publications in chemistry, relative 
to that of all scientific journal publications  
(as seen in Figure 2), suggests that this topic 
is rapidly gaining momentum in the research 
community. There are several reasons for  

Figure 2. Annual publication volume of AI-related chemistry journal articles from 2000 to 2020

the explosion of AI publications in chemistry 
since 2015, including the introduction of open-
source machine-learning frameworks, such as 
TensorFlow and PyTorch, and deep learning  
and image recognition demonstrations that 
were widely circulated online – all of which  
have increasingly drawn interest from the 
scientific community. 

In fact, 50% of all chemistry publications  
related to AI have been published in the last  
4 years. Countries leading the field are the US 
and China, accounting for over 40% of journal 
publications worldwide. India, Iran, the UK,  
and Germany together account for 20% of all 
published articles.

The expert-curated content from 
CAS is suitable for the quantitative 
analysis of publications against 
variables such as time, country, 
research area, and the details of 
the substance studied.
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The chemistry disciplines embracing the AI revolution

We analyzed the CAS Content Collection to 
understand the growth and distribution of AI-
related publications and patents in chemistry. 
We then delved further to identify the topics 
studied, notable publications and patents,and 
the types of chemical substances most 
frequently involved.

Our analysis revealed that the major contributors 
to AI-related journal publications include 
analytical chemistry, industrial chemistry and 
chemical engineering, and physical chemistry. 
areas with a less rapid adoption include natural 
products, organic chemistry and pharmacology, 
toxicology and pharmaceuticals. For an accurate 
comparison, we normalized the numbers of AI-
related publications in each area to that area’s 
respective total year publication volume (Figure 3).
Interestingly, when looking at patents, 

Figure 3. Journal publication trends of AI in specific research areas from 2000 to 2020

biochemistry is among the fields most represented 
in AI-related applications alongside analytical 
chemistry. However, in terms of journal publications, 
its proportion is relatively moderate. This incentive 
to patent AI technologies could potentially be due  
to the use of biochemistry in drug research  
and development.
 
In addition to examining the numbers, the 
connections between frequently used concepts 
of research topics and AI algorithms have been 
explored over the last 20 years to understand the 
problems that AI is helping to solve (Figure 4). 
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2000–2009 – In the years 2005–2009, the term 
‘homo sapiens’ was a popular term as AI was 
used to explore diagnoses and prognoses related 
to human-based diseases. In addition to ‘homo 

sapiens’, other related concepts appeared,  
including ‘biomarkers’, ‘tumor markers prognosis’ 
and ‘diagnosis’. 
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2010–2014 – During this period, genome 
related concepts became more prevalent, 
including ‘genome’, ‘single nucleotide 
polymorphism’, and ‘biomedical fields’. AI 
was used to explore concepts such as ‘drug 
discovery and design’, as well as ‘blood  
analysis’, ‘neoplasm’, and ‘microRNA’. 
2015–2019 – Within the last six years, the  
use of AI has been focused more on solving 
problems related to DNA methylation, 
mutation, nanofluids, heat transfer, and 

biodiesel fuel, with frequent reference to cancer 
and Alzheimer’s disease. Since the beginning of 
2020 and the COVID-19 pandemic, the increase 
in terms related to drug discovery, diagnosis,  
and disease tracking illustrate the driving force 
of AI in these areas. Similar trends were seen 
in the patent literature, moving from organic 
compounds in the early 2000s to DNA 
sequencing and terms related to machine 
learning closer to the modern day.

Figure 4: Evolution of co-occurring terms in AI-related chemistry patents (A: 2000-2004, B: 2005-2009, C: 2010-2014, D: 2015-2019)
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Distribution of substances in AI literature

Some of the barriers to AI implementation 
in chemistry include challenges in substance 
representation and data availability. A review 
of the distribution of journal and patent 
publications by substance class may be  
indicative of areas in which researchers have, 
in some instances, been able to overcome  
such challenges. Therefore, the distribution  
of AI-related research has been investigated  
by studying the number of documents  
involving some of the most frequently  
occurring substance classes.

As seen in Figure 5 below, publications 
containing small molecule substances are  
the highest in number, followed by those 

Figure 5. Number of AI-related journal publications and number of substances 
associated with each class

containing elements and manual registration 
(large biomolecules) substances. It’s likely that 
the relative simplicity and ease of modeling 
contributes heavily to the high volumes of 
research and invention of AI involving these 
classes compared to substances in other classes, 
such as coordination compound and polymer.

Patent literature has also been analyzed  
(Figure 6), showing a similar trend to the  
number of journal publications and substance 
counts seen in Figure 5. However, patent 
publications in nucleic acid sequences and 
peptide sequences are highest in number, likely 
because patents containing these often contain 
large numbers of sequences per document.
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We have also studied the distribution of 
substances across a variety of role indicators. 
Role indicators are controlled vocabulary 
terms that describe the use of a substance 
within the context of a specific document. A 
total of 41 different role indicators are used by 
CAS to identify roles played by substances. For 
substances found in journal articles, the role 
indicators show a strong representation from 
biological and drug information that all relate 
to the pharma space, such as adverse effects, 
pharmacologic activity, and therapeutic use.
 
AI is also increasingly being applied in analytical 
roles, corresponding to studies in which 
detection of the substance is important. 

Figure 6. Number of AI-related patent publications and number of substances 
associated with each substance class

When reviewing the data for patent  
publications, we saw the top performing  
role indicators are generally similar to those 
seen for journal publications, but remarkable 
differences are found in role indicators for 
diagnostic use, therapeutic use and 
pharmacologic activity. 

In the case of diagnostic use, the high number 
of substances claimed in patents reflects 
the increasing importance of AI in medical 
diagnostics. On the other hand, the large 
quantity of Small Molecules found in journal 
articles combined with the prevalence of the 
therapeutic use and pharmacologic activity 
indicators suggests a strong research focus on 
the use of AI in Small-Molecule drug discovery.
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The collaborations AI is supporting

Following analysis of nearly 70,000 journal 
articles, we identified each primary and 
secondary discipline that contributed to 
interdisciplinary research. The output of this 
analysis is a heatmap graph - the more intense 
the heat, the greater the number of publications 
related to interdisciplinary collaboration.

As seen in Figure 7 below, the ‘hot spots’ match 
those in the disciplines topping those in earlier 
sections, including collaborations between 
analytical chemistry and biochemistry,  
and between materials science and  
physical chemistry.

In the collaborations between analytical 
chemistry and biochemistry, AI is being used to 
improve the analysis of proteins, peptides, lipids,  

and nucleic acids. And in the collaboration 
between materials science and physical 
chemistry, AI is helping to predict functional 
materials, structure-property relationships and 
chemical process optimization.While there are 
significant hot spots on the graph, there are  
also several dark areas. 

Each inter-disciplinary segment may benefit 
from adopting AI to help solve problems or 
accelerate workflows. However, many areas  
may also have challenges or barriers preventing 
easy adoption.

To better understand this, we explored the  
potential challenges.

Figure 7. Relative prevalence of interdisciplinary studies published in journal articles 
(columns denote primary research areas, rows denote secondary research areas, and each 
square denotes an interdisciplinary pair of primary and secondary research areas)



Challenges to AI adoption 

The stark differences in the use of AI 
between different chemistry disciplines, 
seen in patent and publications activity, may 
be indicative of the challenges in adopting 
AI. Challenges to AI adoption include:

–  Data quality: Optimal predictions are 
dependent upon robust, high quality 
datasets that provide both positive and 
negative examples for training. Accessing, 
normalizing, and preparing the data is 
a significant challenge today for many 
organizations.

–  Technology: While improvements 
are being made in computing power 
(quantum and cloud-based approaches), 
there are still perceived limitations from 
a user perspective. However, advances in 
software and user interfaces today remove 
programming requirements to allow more 
scientists to utilize machine learning  
in their research.

–  Talent shortages: Data science has 
a well-documented talent shortage, 
and chemists may not understand how 
approachable AI is today. Increasing 
collaboration between chemistry and 
other scientific disciplines may help 
accelerate the integration of AI.

 
Although these challenges may account 
for the lack of growth in AI adoption 
across the different chemistry disciplines, 
future improvements in AI itself, increased 
awareness and acceptance, adaption of 
AI methods for chemistry research, and 
lessons from successful applications in AI 
combined could help increase the uptake  
of AI in these areas.
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The bright future of AI in chemistry

For a detailed review on the growth 
and distribution of AI application 
in chemistry, see our publication in 
the Journal of Chemical Information 
and Modelling.*
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Our review of the landscape shows 
AIapplication in chemistry-related research 
has become commonplace in recent 
years. A broad acceptance and general 
understanding of AI among the population 
at large has in turn led to greater acceptance 
of AI in scientific research – even in fields 
traditionally steeped in first principles, such 
as physical chemistry.  

The upskilling of researchers in data 
preparation and the availability of public 
computational platforms and domain-specific 
datasets, which have proliferated in recent 
years, have also contributed greatly. In the 
coming decade, it is anticipated that these 
tools will be leveraged in various innovative 
applications, within an increasingly 
interdisciplinary research landscape. 
However, the increasing use of AI in 

chemistry by no means indicates that it is 
always successful. It is estimated that 75% 
of companies are trying to deploy AI in 
their organization, yet 83%of AI projects 
are not meeting expectations,and projects 
that reach deployment are only profitable 
60% of the time. To improve the successful 
adoption of AI, challenges such as lack of/
poor data quality and talent shortages 
need to be addressed. For the future of 
AI in chemistry to be as bright as possible, 
there needs to be increasing collaboration 
between scientists and technologists 
alongside computational and technological 
improvements such as increasing 
computational power and investments  
in new tools.

*To view publication visit: https://pubs.acs.org/doi/10.1021/acs.jcim.1c00619 
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